Product Code Database
Example Keywords: radiant silvergun -final $36-133
barcode-scavenger
   » » Wiki: Burgers Material
Tag Wiki 'Burgers Material'.
Tag

A Burgers material is a material having the properties both of elasticity and . It is named after the Dutch physicist Johannes Martinus Burgers.


Overview

Maxwell representation
Given that one Maxwell material has an elasticity E_1 and viscosity \eta_1, and the other Maxwell material has an elasticity E_2 and viscosity \eta_2, the Burgers model has the constitutive equation
\sigma + \left( \frac {\eta_1} {E_1} + \frac {\eta_2} {E_2} \right) \dot\sigma +
\frac {\eta_1 \eta_2} {E_1 E_2} \ddot\sigma = \left( \eta_1 + \eta_2 \right) \dot\varepsilon + \frac {\eta_1 \eta_2 \left( E_1 + E_2 \right)} {E_1 E_2} \ddot\varepsilon where \sigma is the stress and \varepsilon is the strain.


Kelvin representation
Given that the Kelvin material has an elasticity E_1 and viscosity \eta_1, the spring has an elasticity E_2 and the dashpot has a viscosity \eta_2, the Burgers model has the constitutive equation
\sigma + \left( \frac {\eta_1} {E_1} + \frac {\eta_2} {E_1} + \frac {\eta_2} {E_2} \right) \dot\sigma +
\frac {\eta_1 \eta_2} {E_1 E_2} \ddot\sigma = \eta_2\dot\varepsilon + \frac {\eta_1 \eta_2} {E_1} \ddot\varepsilon where \sigma is the stress and \varepsilon is the strain.
(2025). 9781895198331, ChemTec Publishing.


Model characteristics
This model incorporates viscous flow into the standard linear solid model, giving a linearly increasing asymptote for strain under fixed loading conditions.


See also
  • Generalized Maxwell model
  • Kelvin–Voigt material
  • Standard linear solid model


External links

Page 1 of 1
1
Page 1 of 1
1

Account

Social:
Pages:  ..   .. 
Items:  .. 

Navigation

General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 

Statistics

Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs
1s Time